$$$2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)}$$$ に対して適用する:

$${\color{red}{\int{2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{\cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)} d x}\right)}}$$

2つの余割(cosecant)を因数として取り出し、残りは余接(cotangent)で表しなさい。$$$\alpha=x$$$ に関する公式 $$$\csc^2\left( \alpha \right)=\cot^2\left( \alpha \right)+1$$$ を用いてください。:

$$2 {\color{red}{\int{\cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)} d x}}} = 2 {\color{red}{\int{\left(\cot^{2}{\left(x \right)} + 1\right) \cot^{6}{\left(x \right)} \csc^{2}{\left(x \right)} d x}}}$$

$$$u=\cot{\left(x \right)}$$$ とする。

すると $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\csc^{2}{\left(x \right)} dx = - du$$$ となります。

したがって、

$$2 {\color{red}{\int{\left(\cot^{2}{\left(x \right)} + 1\right) \cot^{6}{\left(x \right)} \csc^{2}{\left(x \right)} d x}}} = 2 {\color{red}{\int{\left(- u^{6} \left(u^{2} + 1\right)\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$$$$f{\left(u \right)} = u^{6} \left(u^{2} + 1\right)$$$ に対して適用する:

$$2 {\color{red}{\int{\left(- u^{6} \left(u^{2} + 1\right)\right)d u}}} = 2 {\color{red}{\left(- \int{u^{6} \left(u^{2} + 1\right) d u}\right)}}$$

Expand the expression:

$$- 2 {\color{red}{\int{u^{6} \left(u^{2} + 1\right) d u}}} = - 2 {\color{red}{\int{\left(u^{8} + u^{6}\right)d u}}}$$

項別に積分せよ:

$$- 2 {\color{red}{\int{\left(u^{8} + u^{6}\right)d u}}} = - 2 {\color{red}{\left(\int{u^{6} d u} + \int{u^{8} d u}\right)}}$$

$$$n=6$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- 2 \int{u^{8} d u} - 2 {\color{red}{\int{u^{6} d u}}}=- 2 \int{u^{8} d u} - 2 {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=- 2 \int{u^{8} d u} - 2 {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$

$$$n=8$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- \frac{2 u^{7}}{7} - 2 {\color{red}{\int{u^{8} d u}}}=- \frac{2 u^{7}}{7} - 2 {\color{red}{\frac{u^{1 + 8}}{1 + 8}}}=- \frac{2 u^{7}}{7} - 2 {\color{red}{\left(\frac{u^{9}}{9}\right)}}$$

次のことを思い出してください $$$u=\cot{\left(x \right)}$$$:

$$- \frac{2 {\color{red}{u}}^{7}}{7} - \frac{2 {\color{red}{u}}^{9}}{9} = - \frac{2 {\color{red}{\cot{\left(x \right)}}}^{7}}{7} - \frac{2 {\color{red}{\cot{\left(x \right)}}}^{9}}{9}$$

したがって、

$$\int{2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)} d x} = - \frac{2 \cot^{9}{\left(x \right)}}{9} - \frac{2 \cot^{7}{\left(x \right)}}{7}$$

簡単化せよ:

$$\int{2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)} d x} = \frac{2 \left(- 7 \cot^{2}{\left(x \right)} - 9\right) \cot^{7}{\left(x \right)}}{63}$$

積分定数を加える:

$$\int{2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)} d x} = \frac{2 \left(- 7 \cot^{2}{\left(x \right)} - 9\right) \cot^{7}{\left(x \right)}}{63}+C$$

解答

$$$\int 2 \cot^{6}{\left(x \right)} \csc^{4}{\left(x \right)}\, dx = \frac{2 \left(- 7 \cot^{2}{\left(x \right)} - 9\right) \cot^{7}{\left(x \right)}}{63} + C$$$A


Please try a new game Rotatly