$$$2025^{x}$$$の積分
入力内容
$$$\int 2025^{x}\, dx$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2025$$$:
$${\color{red}{\int{2025^{x} d x}}} = {\color{red}{\frac{2025^{x}}{\ln{\left(2025 \right)}}}}$$
したがって、
$$\int{2025^{x} d x} = \frac{2025^{x}}{\ln{\left(2025 \right)}}$$
簡単化せよ:
$$\int{2025^{x} d x} = \frac{2025^{x}}{2 \ln{\left(45 \right)}}$$
積分定数を加える:
$$\int{2025^{x} d x} = \frac{2025^{x}}{2 \ln{\left(45 \right)}}+C$$
解答
$$$\int 2025^{x}\, dx = \frac{2025^{x}}{2 \ln\left(45\right)} + C$$$A
Please try a new game Rotatly