$$$2 \ln\left(\sin{\left(x \right)}\right) \sin^{6}{\left(x \right)} \cos{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$2 \ln\left(\sin{\left(x \right)}\right) \sin^{6}{\left(x \right)} \cos{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 2 \ln\left(\sin{\left(x \right)}\right) \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = \ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)}$$$ に対して適用する:

$${\color{red}{\int{2 \ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{\ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)} d x}\right)}}$$

$$$u=\sin{\left(x \right)}$$$ とする。

すると $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\cos{\left(x \right)} dx = du$$$ となります。

したがって、

$$2 {\color{red}{\int{\ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)} d x}}} = 2 {\color{red}{\int{u^{6} \ln{\left(u \right)} d u}}}$$

積分 $$$\int{u^{6} \ln{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$を用いてください。

$$$\operatorname{\kappa}=\ln{\left(u \right)}$$$$$$\operatorname{dv}=u^{6} du$$$ とする。

したがって、$$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$(手順は»を参照)および$$$\operatorname{v}=\int{u^{6} d u}=\frac{u^{7}}{7}$$$(手順は»を参照)。

したがって、

$$2 {\color{red}{\int{u^{6} \ln{\left(u \right)} d u}}}=2 {\color{red}{\left(\ln{\left(u \right)} \cdot \frac{u^{7}}{7}-\int{\frac{u^{7}}{7} \cdot \frac{1}{u} d u}\right)}}=2 {\color{red}{\left(\frac{u^{7} \ln{\left(u \right)}}{7} - \int{\frac{u^{6}}{7} d u}\right)}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{7}$$$$$$f{\left(u \right)} = u^{6}$$$ に対して適用する:

$$\frac{2 u^{7} \ln{\left(u \right)}}{7} - 2 {\color{red}{\int{\frac{u^{6}}{7} d u}}} = \frac{2 u^{7} \ln{\left(u \right)}}{7} - 2 {\color{red}{\left(\frac{\int{u^{6} d u}}{7}\right)}}$$

$$$n=6$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{2 u^{7} \ln{\left(u \right)}}{7} - \frac{2 {\color{red}{\int{u^{6} d u}}}}{7}=\frac{2 u^{7} \ln{\left(u \right)}}{7} - \frac{2 {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}}{7}=\frac{2 u^{7} \ln{\left(u \right)}}{7} - \frac{2 {\color{red}{\left(\frac{u^{7}}{7}\right)}}}{7}$$

次のことを思い出してください $$$u=\sin{\left(x \right)}$$$:

$$- \frac{2 {\color{red}{u}}^{7}}{49} + \frac{2 {\color{red}{u}}^{7} \ln{\left({\color{red}{u}} \right)}}{7} = - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{7}}{49} + \frac{2 {\color{red}{\sin{\left(x \right)}}}^{7} \ln{\left({\color{red}{\sin{\left(x \right)}}} \right)}}{7}$$

したがって、

$$\int{2 \ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)} d x} = \frac{2 \ln{\left(\sin{\left(x \right)} \right)} \sin^{7}{\left(x \right)}}{7} - \frac{2 \sin^{7}{\left(x \right)}}{49}$$

簡単化せよ:

$$\int{2 \ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)} d x} = \frac{2 \left(7 \ln{\left(\sin{\left(x \right)} \right)} - 1\right) \sin^{7}{\left(x \right)}}{49}$$

積分定数を加える:

$$\int{2 \ln{\left(\sin{\left(x \right)} \right)} \sin^{6}{\left(x \right)} \cos{\left(x \right)} d x} = \frac{2 \left(7 \ln{\left(\sin{\left(x \right)} \right)} - 1\right) \sin^{7}{\left(x \right)}}{49}+C$$

解答

$$$\int 2 \ln\left(\sin{\left(x \right)}\right) \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx = \frac{2 \left(7 \ln\left(\sin{\left(x \right)}\right) - 1\right) \sin^{7}{\left(x \right)}}{49} + C$$$A


Please try a new game Rotatly