$$$6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$の積分

この計算機は、手順を示しながら$$$6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=6$$$$$$f{\left(x \right)} = e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$ に対して適用する:

$${\color{red}{\int{6 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}} = {\color{red}{\left(6 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}\right)}}$$

積分 $$$\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\sin{\left(2 x \right)}$$$$$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$(手順は»を参照)。

積分は次のようになります

$$6 {\color{red}{\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}}=6 {\color{red}{\left(\sin{\left(2 x \right)} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=6 {\color{red}{\left(- \int{\left(- 4 e^{- \frac{x}{2}} \cos{\left(2 x \right)}\right)d x} - 2 e^{- \frac{x}{2}} \sin{\left(2 x \right)}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-4$$$$$$f{\left(x \right)} = e^{- \frac{x}{2}} \cos{\left(2 x \right)}$$$ に対して適用する:

$$- 6 {\color{red}{\int{\left(- 4 e^{- \frac{x}{2}} \cos{\left(2 x \right)}\right)d x}}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} = - 6 {\color{red}{\left(- 4 \int{e^{- \frac{x}{2}} \cos{\left(2 x \right)} d x}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$

積分 $$$\int{e^{- \frac{x}{2}} \cos{\left(2 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\cos{\left(2 x \right)}$$$$$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$(手順は»を参照)。

したがって、

$$24 {\color{red}{\int{e^{- \frac{x}{2}} \cos{\left(2 x \right)} d x}}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}=24 {\color{red}{\left(\cos{\left(2 x \right)} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}=24 {\color{red}{\left(- \int{4 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} - 2 e^{- \frac{x}{2}} \cos{\left(2 x \right)}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=4$$$$$$f{\left(x \right)} = e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$ に対して適用する:

$$- 24 {\color{red}{\int{4 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} - 48 e^{- \frac{x}{2}} \cos{\left(2 x \right)} = - 24 {\color{red}{\left(4 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} - 48 e^{- \frac{x}{2}} \cos{\left(2 x \right)}$$

すでに見た積分に帰着しました。

したがって、積分に関する次の簡単な等式を得ました:

$$6 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = - 96 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} - 48 e^{- \frac{x}{2}} \cos{\left(2 x \right)}$$

これを解くと、次のようになります。

$$\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}$$

したがって、

$$6 {\color{red}{\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}} = 6 {\color{red}{\left(\frac{2 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}\right)}}$$

したがって、

$$\int{6 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = \frac{12 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}$$

積分定数を加える:

$$\int{6 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = \frac{12 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}+C$$

解答

$$$\int 6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}\, dx = \frac{12 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17} + C$$$A


Please try a new game Rotatly