$$$11 x + \frac{17}{2 x^{2} + 7 x - 4}$$$の積分

この計算機は、手順を示しながら$$$11 x + \frac{17}{2 x^{2} + 7 x - 4}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(11 x + \frac{17}{2 x^{2} + 7 x - 4}\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(11 x + \frac{17}{2 x^{2} + 7 x - 4}\right)d x}}} = {\color{red}{\left(\int{11 x d x} + \int{\frac{17}{2 x^{2} + 7 x - 4} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=11$$$$$$f{\left(x \right)} = x$$$ に対して適用する:

$$\int{\frac{17}{2 x^{2} + 7 x - 4} d x} + {\color{red}{\int{11 x d x}}} = \int{\frac{17}{2 x^{2} + 7 x - 4} d x} + {\color{red}{\left(11 \int{x d x}\right)}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\int{\frac{17}{2 x^{2} + 7 x - 4} d x} + 11 {\color{red}{\int{x d x}}}=\int{\frac{17}{2 x^{2} + 7 x - 4} d x} + 11 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\frac{17}{2 x^{2} + 7 x - 4} d x} + 11 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=17$$$$$$f{\left(x \right)} = \frac{1}{2 x^{2} + 7 x - 4}$$$ に対して適用する:

$$\frac{11 x^{2}}{2} + {\color{red}{\int{\frac{17}{2 x^{2} + 7 x - 4} d x}}} = \frac{11 x^{2}}{2} + {\color{red}{\left(17 \int{\frac{1}{2 x^{2} + 7 x - 4} d x}\right)}}$$

部分分数分解を行う (手順は»で確認できます):

$$\frac{11 x^{2}}{2} + 17 {\color{red}{\int{\frac{1}{2 x^{2} + 7 x - 4} d x}}} = \frac{11 x^{2}}{2} + 17 {\color{red}{\int{\left(\frac{2}{9 \left(2 x - 1\right)} - \frac{1}{9 \left(x + 4\right)}\right)d x}}}$$

項別に積分せよ:

$$\frac{11 x^{2}}{2} + 17 {\color{red}{\int{\left(\frac{2}{9 \left(2 x - 1\right)} - \frac{1}{9 \left(x + 4\right)}\right)d x}}} = \frac{11 x^{2}}{2} + 17 {\color{red}{\left(- \int{\frac{1}{9 \left(x + 4\right)} d x} + \int{\frac{2}{9 \left(2 x - 1\right)} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{9}$$$$$$f{\left(x \right)} = \frac{1}{x + 4}$$$ に対して適用する:

$$\frac{11 x^{2}}{2} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} - 17 {\color{red}{\int{\frac{1}{9 \left(x + 4\right)} d x}}} = \frac{11 x^{2}}{2} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} - 17 {\color{red}{\left(\frac{\int{\frac{1}{x + 4} d x}}{9}\right)}}$$

$$$u=x + 4$$$ とする。

すると $$$du=\left(x + 4\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

この積分は次のように書き換えられる

$$\frac{11 x^{2}}{2} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} - \frac{17 {\color{red}{\int{\frac{1}{x + 4} d x}}}}{9} = \frac{11 x^{2}}{2} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} - \frac{17 {\color{red}{\int{\frac{1}{u} d u}}}}{9}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$\frac{11 x^{2}}{2} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} - \frac{17 {\color{red}{\int{\frac{1}{u} d u}}}}{9} = \frac{11 x^{2}}{2} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} - \frac{17 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9}$$

次のことを思い出してください $$$u=x + 4$$$:

$$\frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{{\color{red}{\left(x + 4\right)}}}\right| \right)}}{9} + 17 \int{\frac{2}{9 \left(2 x - 1\right)} d x}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{2}{9}$$$$$$f{\left(x \right)} = \frac{1}{2 x - 1}$$$ に対して適用する:

$$\frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + 17 {\color{red}{\int{\frac{2}{9 \left(2 x - 1\right)} d x}}} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + 17 {\color{red}{\left(\frac{2 \int{\frac{1}{2 x - 1} d x}}{9}\right)}}$$

$$$u=2 x - 1$$$ とする。

すると $$$du=\left(2 x - 1\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。

したがって、

$$\frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{34 {\color{red}{\int{\frac{1}{2 x - 1} d x}}}}{9} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{34 {\color{red}{\int{\frac{1}{2 u} d u}}}}{9}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:

$$\frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{34 {\color{red}{\int{\frac{1}{2 u} d u}}}}{9} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{34 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}}{9}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$\frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{17 {\color{red}{\int{\frac{1}{u} d u}}}}{9} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{17 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9}$$

次のことを思い出してください $$$u=2 x - 1$$$:

$$\frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{17 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{17 \ln{\left(\left|{{\color{red}{\left(2 x - 1\right)}}}\right| \right)}}{9}$$

したがって、

$$\int{\left(11 x + \frac{17}{2 x^{2} + 7 x - 4}\right)d x} = \frac{11 x^{2}}{2} - \frac{17 \ln{\left(\left|{x + 4}\right| \right)}}{9} + \frac{17 \ln{\left(\left|{2 x - 1}\right| \right)}}{9}$$

簡単化せよ:

$$\int{\left(11 x + \frac{17}{2 x^{2} + 7 x - 4}\right)d x} = \frac{99 x^{2} - 34 \ln{\left(\left|{x + 4}\right| \right)} + 34 \ln{\left(\left|{2 x - 1}\right| \right)}}{18}$$

積分定数を加える:

$$\int{\left(11 x + \frac{17}{2 x^{2} + 7 x - 4}\right)d x} = \frac{99 x^{2} - 34 \ln{\left(\left|{x + 4}\right| \right)} + 34 \ln{\left(\left|{2 x - 1}\right| \right)}}{18}+C$$

解答

$$$\int \left(11 x + \frac{17}{2 x^{2} + 7 x - 4}\right)\, dx = \frac{99 x^{2} - 34 \ln\left(\left|{x + 4}\right|\right) + 34 \ln\left(\left|{2 x - 1}\right|\right)}{18} + C$$$A


Please try a new game Rotatly