$$$x^{- e}$$$の積分

この計算機は、手順を示しながら$$$x^{- e}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{- e}\, dx$$$ を求めよ。

解答

$$$n=- e$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$${\color{red}{\int{x^{- e} d x}}}={\color{red}{\int{x^{- e} d x}}}={\color{red}{\frac{x^{1 - e}}{1 - e}}}={\color{red}{x^{1 - e} \left(1 - e\right)^{-1}}}={\color{red}{\frac{1}{x^{-1 + e} \left(1 - e\right)}}}$$

したがって、

$$\int{x^{- e} d x} = \frac{1}{x^{-1 + e} \left(1 - e\right)}$$

積分定数を加える:

$$\int{x^{- e} d x} = \frac{1}{x^{-1 + e} \left(1 - e\right)}+C$$

解答

$$$\int x^{- e}\, dx = \frac{1}{x^{-1 + e} \left(1 - e\right)} + C$$$A


Please try a new game Rotatly