$$$\frac{1}{x^{6}}$$$の積分
入力内容
$$$\int \frac{1}{x^{6}}\, dx$$$ を求めよ。
解答
$$$n=-6$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{x^{6}} d x}}}={\color{red}{\int{x^{-6} d x}}}={\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}={\color{red}{\left(- \frac{x^{-5}}{5}\right)}}={\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}$$
したがって、
$$\int{\frac{1}{x^{6}} d x} = - \frac{1}{5 x^{5}}$$
積分定数を加える:
$$\int{\frac{1}{x^{6}} d x} = - \frac{1}{5 x^{5}}+C$$
解答
$$$\int \frac{1}{x^{6}}\, dx = - \frac{1}{5 x^{5}} + C$$$A
Please try a new game Rotatly