$$$\frac{\sqrt{\ln\left(x\right)}}{x}$$$の積分
入力内容
$$$\int \frac{\sqrt{\ln\left(x\right)}}{x}\, dx$$$ を求めよ。
解答
$$$u=\ln{\left(x \right)}$$$ とする。
すると $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$(手順は»で確認できます)、$$$\frac{dx}{x} = du$$$ となります。
この積分は次のように書き換えられる
$${\color{red}{\int{\frac{\sqrt{\ln{\left(x \right)}}}{x} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
$$$n=\frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
次のことを思い出してください $$$u=\ln{\left(x \right)}$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\ln{\left(x \right)}}}^{\frac{3}{2}}}{3}$$
したがって、
$$\int{\frac{\sqrt{\ln{\left(x \right)}}}{x} d x} = \frac{2 \ln{\left(x \right)}^{\frac{3}{2}}}{3}$$
積分定数を加える:
$$\int{\frac{\sqrt{\ln{\left(x \right)}}}{x} d x} = \frac{2 \ln{\left(x \right)}^{\frac{3}{2}}}{3}+C$$
解答
$$$\int \frac{\sqrt{\ln\left(x\right)}}{x}\, dx = \frac{2 \ln^{\frac{3}{2}}\left(x\right)}{3} + C$$$A