$$$- \ln\left(x\right) + \frac{1}{\ln\left(x\right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(- \ln\left(x\right) + \frac{1}{\ln\left(x\right)}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- \ln{\left(x \right)} + \frac{1}{\ln{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{\ln{\left(x \right)}} d x} - \int{\ln{\left(x \right)} d x}\right)}}$$
この積分(対数積分)には閉形式はありません:
$$- \int{\ln{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{\ln{\left(x \right)}} d x}}} = - \int{\ln{\left(x \right)} d x} + {\color{red}{\operatorname{li}{\left(x \right)}}}$$
積分 $$$\int{\ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\ln{\left(x \right)}$$$ と $$$\operatorname{dv}=dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。
この積分は次のように書き換えられる
$$\operatorname{li}{\left(x \right)} - {\color{red}{\int{\ln{\left(x \right)} d x}}}=\operatorname{li}{\left(x \right)} - {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=\operatorname{li}{\left(x \right)} - {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$- x \ln{\left(x \right)} + \operatorname{li}{\left(x \right)} + {\color{red}{\int{1 d x}}} = - x \ln{\left(x \right)} + \operatorname{li}{\left(x \right)} + {\color{red}{x}}$$
したがって、
$$\int{\left(- \ln{\left(x \right)} + \frac{1}{\ln{\left(x \right)}}\right)d x} = - x \ln{\left(x \right)} + x + \operatorname{li}{\left(x \right)}$$
積分定数を加える:
$$\int{\left(- \ln{\left(x \right)} + \frac{1}{\ln{\left(x \right)}}\right)d x} = - x \ln{\left(x \right)} + x + \operatorname{li}{\left(x \right)}+C$$
解答
$$$\int \left(- \ln\left(x\right) + \frac{1}{\ln\left(x\right)}\right)\, dx = \left(- x \ln\left(x\right) + x + \operatorname{li}{\left(x \right)}\right) + C$$$A