$$$- a + \frac{1}{b}$$$$$$a$$$ に関する積分

この計算機は、$$$a$$$ に関して $$$- a + \frac{1}{b}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- a + \frac{1}{b}\right)\, da$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- a + \frac{1}{b}\right)d a}}} = {\color{red}{\left(- \int{a d a} + \int{\frac{1}{b} d a}\right)}}$$

$$$c=\frac{1}{b}$$$ に対して定数則 $$$\int c\, da = a c$$$ を適用する:

$$- \int{a d a} + {\color{red}{\int{\frac{1}{b} d a}}} = - \int{a d a} + {\color{red}{\frac{a}{b}}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{a}{b} - {\color{red}{\int{a d a}}}=\frac{a}{b} - {\color{red}{\frac{a^{1 + 1}}{1 + 1}}}=\frac{a}{b} - {\color{red}{\left(\frac{a^{2}}{2}\right)}}$$

したがって、

$$\int{\left(- a + \frac{1}{b}\right)d a} = - \frac{a^{2}}{2} + \frac{a}{b}$$

積分定数を加える:

$$\int{\left(- a + \frac{1}{b}\right)d a} = - \frac{a^{2}}{2} + \frac{a}{b}+C$$

解答

$$$\int \left(- a + \frac{1}{b}\right)\, da = \left(- \frac{a^{2}}{2} + \frac{a}{b}\right) + C$$$A


Please try a new game Rotatly