$$$\frac{\ln^{4}\left(x\right)}{2}$$$の積分

この計算機は、手順を示しながら$$$\frac{\ln^{4}\left(x\right)}{2}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\ln^{4}\left(x\right)}{2}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \ln{\left(x \right)}^{4}$$$ に対して適用する:

$${\color{red}{\int{\frac{\ln{\left(x \right)}^{4}}{2} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(x \right)}^{4} d x}}{2}\right)}}$$

積分 $$$\int{\ln{\left(x \right)}^{4} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}^{4}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}^{4}\right)^{\prime }dx=\frac{4 \ln{\left(x \right)}^{3}}{x} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$\frac{{\color{red}{\int{\ln{\left(x \right)}^{4} d x}}}}{2}=\frac{{\color{red}{\left(\ln{\left(x \right)}^{4} \cdot x-\int{x \cdot \frac{4 \ln{\left(x \right)}^{3}}{x} d x}\right)}}}{2}=\frac{{\color{red}{\left(x \ln{\left(x \right)}^{4} - \int{4 \ln{\left(x \right)}^{3} d x}\right)}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=4$$$$$$f{\left(x \right)} = \ln{\left(x \right)}^{3}$$$ に対して適用する:

$$\frac{x \ln{\left(x \right)}^{4}}{2} - \frac{{\color{red}{\int{4 \ln{\left(x \right)}^{3} d x}}}}{2} = \frac{x \ln{\left(x \right)}^{4}}{2} - \frac{{\color{red}{\left(4 \int{\ln{\left(x \right)}^{3} d x}\right)}}}{2}$$

積分 $$$\int{\ln{\left(x \right)}^{3} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}^{3}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}^{3}\right)^{\prime }dx=\frac{3 \ln{\left(x \right)}^{2}}{x} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$\frac{x \ln{\left(x \right)}^{4}}{2} - 2 {\color{red}{\int{\ln{\left(x \right)}^{3} d x}}}=\frac{x \ln{\left(x \right)}^{4}}{2} - 2 {\color{red}{\left(\ln{\left(x \right)}^{3} \cdot x-\int{x \cdot \frac{3 \ln{\left(x \right)}^{2}}{x} d x}\right)}}=\frac{x \ln{\left(x \right)}^{4}}{2} - 2 {\color{red}{\left(x \ln{\left(x \right)}^{3} - \int{3 \ln{\left(x \right)}^{2} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$ に対して適用する:

$$\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 2 {\color{red}{\int{3 \ln{\left(x \right)}^{2} d x}}} = \frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 2 {\color{red}{\left(3 \int{\ln{\left(x \right)}^{2} d x}\right)}}$$

積分 $$$\int{\ln{\left(x \right)}^{2} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}=\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}=\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = \ln{\left(x \right)}$$$ に対して適用する:

$$\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 6 {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = \frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 6 {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}$$

積分 $$$\int{\ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 12 {\color{red}{\int{\ln{\left(x \right)} d x}}}=\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 12 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 12 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$\frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 12 x \ln{\left(x \right)} + 12 {\color{red}{\int{1 d x}}} = \frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 12 x \ln{\left(x \right)} + 12 {\color{red}{x}}$$

したがって、

$$\int{\frac{\ln{\left(x \right)}^{4}}{2} d x} = \frac{x \ln{\left(x \right)}^{4}}{2} - 2 x \ln{\left(x \right)}^{3} + 6 x \ln{\left(x \right)}^{2} - 12 x \ln{\left(x \right)} + 12 x$$

簡単化せよ:

$$\int{\frac{\ln{\left(x \right)}^{4}}{2} d x} = \frac{x \left(\ln{\left(x \right)}^{4} - 4 \ln{\left(x \right)}^{3} + 12 \ln{\left(x \right)}^{2} - 24 \ln{\left(x \right)} + 24\right)}{2}$$

積分定数を加える:

$$\int{\frac{\ln{\left(x \right)}^{4}}{2} d x} = \frac{x \left(\ln{\left(x \right)}^{4} - 4 \ln{\left(x \right)}^{3} + 12 \ln{\left(x \right)}^{2} - 24 \ln{\left(x \right)} + 24\right)}{2}+C$$

解答

$$$\int \frac{\ln^{4}\left(x\right)}{2}\, dx = \frac{x \left(\ln^{4}\left(x\right) - 4 \ln^{3}\left(x\right) + 12 \ln^{2}\left(x\right) - 24 \ln\left(x\right) + 24\right)}{2} + C$$$A


Please try a new game Rotatly