$$$\frac{1}{\sqrt{a^{2} - x^{2}}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{1}{\sqrt{a^{2} - x^{2}}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{\sqrt{a^{2} - x^{2}}}\, dx$$$ を求めよ。

解答

$$$x=\sin{\left(u \right)} \left|{a}\right|$$$ とする。

すると $$$dx=\left(\sin{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \cos{\left(u \right)} \left|{a}\right| du$$$ (手順は»で確認できます)。

また、$$$u=\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}$$$が成り立つ。

したがって、

$$$\frac{1}{\sqrt{a^{2} - x^{2}}} = \frac{1}{\sqrt{- a^{2} \sin^{2}{\left( u \right)} + a^{2}}}$$$

恒等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ を用いよ:

$$$\frac{1}{\sqrt{- a^{2} \sin^{2}{\left( u \right)} + a^{2}}}=\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}} \left|{a}\right|}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \left|{a}\right|}$$$

$$$\cos{\left( u \right)} \ge 0$$$ を仮定すると、以下が得られる:

$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}} \left|{a}\right|} = \frac{1}{\cos{\left( u \right)} \left|{a}\right|}$$$

積分は次のようになる

$${\color{red}{\int{\frac{1}{\sqrt{a^{2} - x^{2}}} d x}}} = {\color{red}{\int{1 d u}}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$

次のことを思い出してください $$$u=\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:

$${\color{red}{u}} = {\color{red}{\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}}$$

したがって、

$$\int{\frac{1}{\sqrt{a^{2} - x^{2}}} d x} = \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}$$

積分定数を加える:

$$\int{\frac{1}{\sqrt{a^{2} - x^{2}}} d x} = \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}+C$$

解答

$$$\int \frac{1}{\sqrt{a^{2} - x^{2}}}\, dx = \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)} + C$$$A


Please try a new game Rotatly