$$$\frac{1}{x^{2} - 3}$$$の積分

この計算機は、手順を示しながら$$$\frac{1}{x^{2} - 3}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{x^{2} - 3}\, dx$$$ を求めよ。

解答

部分分数分解を行う (手順は»で確認できます):

$${\color{red}{\int{\frac{1}{x^{2} - 3} d x}}} = {\color{red}{\int{\left(- \frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} + \frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)}\right)d x}}}$$

項別に積分せよ:

$${\color{red}{\int{\left(- \frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} + \frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \int{\frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\sqrt{3}}{6}$$$$$$f{\left(x \right)} = \frac{1}{x + \sqrt{3}}$$$ に対して適用する:

$$\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - {\color{red}{\int{\frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} d x}}} = \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - {\color{red}{\left(\frac{\sqrt{3} \int{\frac{1}{x + \sqrt{3}} d x}}{6}\right)}}$$

$$$u=x + \sqrt{3}$$$ とする。

すると $$$du=\left(x + \sqrt{3}\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

この積分は次のように書き換えられる

$$\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\int{\frac{1}{x + \sqrt{3}} d x}}}}{6} = \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6} = \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$

次のことを思い出してください $$$u=x + \sqrt{3}$$$:

$$- \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} + \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} = - \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{3}\right)}}}\right| \right)}}{6} + \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\sqrt{3}}{6}$$$$$$f{\left(x \right)} = \frac{1}{x - \sqrt{3}}$$$ に対して適用する:

$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + {\color{red}{\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x}}} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + {\color{red}{\left(\frac{\sqrt{3} \int{\frac{1}{x - \sqrt{3}} d x}}{6}\right)}}$$

$$$u=x - \sqrt{3}$$$ とする。

すると $$$du=\left(x - \sqrt{3}\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

したがって、

$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\int{\frac{1}{x - \sqrt{3}} d x}}}}{6} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$

次のことを思い出してください $$$u=x - \sqrt{3}$$$:

$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{3}\right)}}}\right| \right)}}{6}$$

したがって、

$$\int{\frac{1}{x^{2} - 3} d x} = \frac{\sqrt{3} \ln{\left(\left|{x - \sqrt{3}}\right| \right)}}{6} - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6}$$

簡単化せよ:

$$\int{\frac{1}{x^{2} - 3} d x} = \frac{\sqrt{3} \left(\ln{\left(\left|{x - \sqrt{3}}\right| \right)} - \ln{\left(\left|{x + \sqrt{3}}\right| \right)}\right)}{6}$$

積分定数を加える:

$$\int{\frac{1}{x^{2} - 3} d x} = \frac{\sqrt{3} \left(\ln{\left(\left|{x - \sqrt{3}}\right| \right)} - \ln{\left(\left|{x + \sqrt{3}}\right| \right)}\right)}{6}+C$$

解答

$$$\int \frac{1}{x^{2} - 3}\, dx = \frac{\sqrt{3} \left(\ln\left(\left|{x - \sqrt{3}}\right|\right) - \ln\left(\left|{x + \sqrt{3}}\right|\right)\right)}{6} + C$$$A


Please try a new game Rotatly