$$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx$$$ を求めよ。
解答
$$$u=\frac{c}{x}$$$ とする。
すると $$$du=\left(\frac{c}{x}\right)^{\prime }dx = - \frac{c}{x^{2}} dx$$$(手順は»で確認できます)、$$$\frac{dx}{x^{2}} = - \frac{du}{c}$$$ となります。
したがって、
$${\color{red}{\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$ に対して適用する:
$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$
$$$v=\ln{\left(u \right)}$$$ とする。
すると $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$(手順は»で確認できます)、$$$\frac{du}{u} = dv$$$ となります。
積分は次のようになります
$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$ の不定積分は $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ です:
$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
次のことを思い出してください $$$v=\ln{\left(u \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
次のことを思い出してください $$$u=\frac{c}{x}$$$:
$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\frac{c}{x}}} \right)}}\right| \right)}$$
したがって、
$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}$$
積分定数を加える:
$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}+C$$
解答
$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx = - \ln\left(\left|{\ln\left(\frac{c}{x}\right)}\right|\right) + C$$$A