$$$\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\sqrt{2}}{2 \sqrt{\pi}}$$$ と $$$f{\left(x \right)} = e^{- \frac{x^{2}}{2}}$$$ に対して適用する:
$${\color{red}{\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{- \frac{x^{2}}{2}} d x}}{2 \sqrt{\pi}}\right)}}$$
$$$u=\frac{\sqrt{2} x}{2}$$$ とする。
すると $$$du=\left(\frac{\sqrt{2} x}{2}\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$(手順は»で確認できます)、$$$dx = \sqrt{2} du$$$ となります。
したがって、
$$\frac{\sqrt{2} {\color{red}{\int{e^{- \frac{x^{2}}{2}} d x}}}}{2 \sqrt{\pi}} = \frac{\sqrt{2} {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}}{2 \sqrt{\pi}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\sqrt{2}$$$ と $$$f{\left(u \right)} = e^{- u^{2}}$$$ に対して適用する:
$$\frac{\sqrt{2} {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}}{2 \sqrt{\pi}} = \frac{\sqrt{2} {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}}{2 \sqrt{\pi}}$$
この積分(誤差関数)には閉形式はありません:
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\sqrt{\pi}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\sqrt{\pi}}$$
次のことを思い出してください $$$u=\frac{\sqrt{2} x}{2}$$$:
$$\frac{\operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}} \right)}}{2}$$
したがって、
$$\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x} = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
積分定数を加える:
$$\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x} = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$
解答
$$$\int \frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}\, dx = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A