$$$\frac{1}{a^{2} v^{2}}$$$$$$v$$$ に関する積分

この計算機は、$$$v$$$ に関して $$$\frac{1}{a^{2} v^{2}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{a^{2} v^{2}}\, dv$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{a^{2}}$$$$$$f{\left(v \right)} = \frac{1}{v^{2}}$$$ に対して適用する:

$${\color{red}{\int{\frac{1}{a^{2} v^{2}} d v}}} = {\color{red}{\frac{\int{\frac{1}{v^{2}} d v}}{a^{2}}}}$$

$$$n=-2$$$ を用いて、べき乗の法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{{\color{red}{\int{\frac{1}{v^{2}} d v}}}}{a^{2}}=\frac{{\color{red}{\int{v^{-2} d v}}}}{a^{2}}=\frac{{\color{red}{\frac{v^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- v^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{v}\right)}}}{a^{2}}$$

したがって、

$$\int{\frac{1}{a^{2} v^{2}} d v} = - \frac{1}{a^{2} v}$$

積分定数を加える:

$$\int{\frac{1}{a^{2} v^{2}} d v} = - \frac{1}{a^{2} v}+C$$

解答

$$$\int \frac{1}{a^{2} v^{2}}\, dv = - \frac{1}{a^{2} v} + C$$$A


Please try a new game Rotatly