$$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$の積分
入力内容
$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\sqrt{11}}{22}$$$ と $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$ に対して適用する:
$${\color{red}{\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x}}} = {\color{red}{\left(\frac{\sqrt{11} \int{e^{- \frac{x}{2}} d x}}{22}\right)}}$$
$$$u=- \frac{x}{2}$$$ とする。
すると $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$(手順は»で確認できます)、$$$dx = - 2 du$$$ となります。
したがって、
$$\frac{\sqrt{11} {\color{red}{\int{e^{- \frac{x}{2}} d x}}}}{22} = \frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-2$$$ と $$$f{\left(u \right)} = e^{u}$$$ に対して適用する:
$$\frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22} = \frac{\sqrt{11} {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}}{22}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$- \frac{\sqrt{11} {\color{red}{\int{e^{u} d u}}}}{11} = - \frac{\sqrt{11} {\color{red}{e^{u}}}}{11}$$
次のことを思い出してください $$$u=- \frac{x}{2}$$$:
$$- \frac{\sqrt{11} e^{{\color{red}{u}}}}{11} = - \frac{\sqrt{11} e^{{\color{red}{\left(- \frac{x}{2}\right)}}}}{11}$$
したがって、
$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}$$
積分定数を加える:
$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}+C$$
解答
$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11} + C$$$A