$$$\frac{1}{\left(3 x - 1\right)^{2}}$$$の積分
入力内容
$$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx$$$ を求めよ。
解答
$$$u=3 x - 1$$$ とする。
すると $$$du=\left(3 x - 1\right)^{\prime }dx = 3 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{3}$$$ となります。
したがって、
$${\color{red}{\int{\frac{1}{\left(3 x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{3 u^{2}} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$ と $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ に対して適用する:
$${\color{red}{\int{\frac{1}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2}} d u}}{3}\right)}}$$
$$$n=-2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{3}=\frac{{\color{red}{\int{u^{-2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{3}=\frac{{\color{red}{\left(- u^{-1}\right)}}}{3}=\frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{3}$$
次のことを思い出してください $$$u=3 x - 1$$$:
$$- \frac{{\color{red}{u}}^{-1}}{3} = - \frac{{\color{red}{\left(3 x - 1\right)}}^{-1}}{3}$$
したがって、
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{3 \left(3 x - 1\right)}$$
簡単化せよ:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}$$
積分定数を加える:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}+C$$
解答
$$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx = - \frac{1}{9 x - 3} + C$$$A