$$$\frac{1}{\left(3 - 5 x\right)^{2}}$$$の積分
入力内容
$$$\int \frac{1}{\left(3 - 5 x\right)^{2}}\, dx$$$ を求めよ。
解答
$$$u=3 - 5 x$$$ とする。
すると $$$du=\left(3 - 5 x\right)^{\prime }dx = - 5 dx$$$(手順は»で確認できます)、$$$dx = - \frac{du}{5}$$$ となります。
したがって、
$${\color{red}{\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{5 u^{2}}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=- \frac{1}{5}$$$ と $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ に対して適用する:
$${\color{red}{\int{\left(- \frac{1}{5 u^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u^{2}} d u}}{5}\right)}}$$
$$$n=-2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{5}=- \frac{{\color{red}{\int{u^{-2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{5}=- \frac{{\color{red}{\left(- u^{-1}\right)}}}{5}=- \frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{5}$$
次のことを思い出してください $$$u=3 - 5 x$$$:
$$\frac{{\color{red}{u}}^{-1}}{5} = \frac{{\color{red}{\left(3 - 5 x\right)}}^{-1}}{5}$$
したがって、
$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = \frac{1}{5 \left(3 - 5 x\right)}$$
簡単化せよ:
$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = - \frac{1}{25 x - 15}$$
積分定数を加える:
$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = - \frac{1}{25 x - 15}+C$$
解答
$$$\int \frac{1}{\left(3 - 5 x\right)^{2}}\, dx = - \frac{1}{25 x - 15} + C$$$A