$$$\frac{1}{y \left(1 - y\right)}$$$の積分

この計算機は、手順を示しながら$$$\frac{1}{y \left(1 - y\right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{y \left(1 - y\right)}\, dy$$$ を求めよ。

解答

部分分数分解を行う (手順は»で確認できます):

$${\color{red}{\int{\frac{1}{y \left(1 - y\right)} d y}}} = {\color{red}{\int{\left(\frac{1}{1 - y} + \frac{1}{y}\right)d y}}}$$

項別に積分せよ:

$${\color{red}{\int{\left(\frac{1}{1 - y} + \frac{1}{y}\right)d y}}} = {\color{red}{\left(\int{\frac{1}{y} d y} + \int{\frac{1}{1 - y} d y}\right)}}$$

$$$\frac{1}{y}$$$ の不定積分は $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$ です:

$$\int{\frac{1}{1 - y} d y} + {\color{red}{\int{\frac{1}{y} d y}}} = \int{\frac{1}{1 - y} d y} + {\color{red}{\ln{\left(\left|{y}\right| \right)}}}$$

$$$u=1 - y$$$ とする。

すると $$$du=\left(1 - y\right)^{\prime }dy = - dy$$$(手順は»で確認できます)、$$$dy = - du$$$ となります。

この積分は次のように書き換えられる

$$\ln{\left(\left|{y}\right| \right)} + {\color{red}{\int{\frac{1}{1 - y} d y}}} = \ln{\left(\left|{y}\right| \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:

$$\ln{\left(\left|{y}\right| \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = \ln{\left(\left|{y}\right| \right)} + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$\ln{\left(\left|{y}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{y}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

次のことを思い出してください $$$u=1 - y$$$:

$$\ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(1 - y\right)}}}\right| \right)}$$

したがって、

$$\int{\frac{1}{y \left(1 - y\right)} d y} = \ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{y - 1}\right| \right)}$$

積分定数を加える:

$$\int{\frac{1}{y \left(1 - y\right)} d y} = \ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{y - 1}\right| \right)}+C$$

解答

$$$\int \frac{1}{y \left(1 - y\right)}\, dy = \left(\ln\left(\left|{y}\right|\right) - \ln\left(\left|{y - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly