$$$- \sin^{2}{\left(2 t \right)}$$$の積分

この計算機は、手順を示しながら$$$- \sin^{2}{\left(2 t \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- \sin^{2}{\left(2 t \right)}\right)\, dt$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=-1$$$$$$f{\left(t \right)} = \sin^{2}{\left(2 t \right)}$$$ に対して適用する:

$${\color{red}{\int{\left(- \sin^{2}{\left(2 t \right)}\right)d t}}} = {\color{red}{\left(- \int{\sin^{2}{\left(2 t \right)} d t}\right)}}$$

$$$u=2 t$$$ とする。

すると $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{2}$$$ となります。

したがって、

$$- {\color{red}{\int{\sin^{2}{\left(2 t \right)} d t}}} = - {\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{2} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$ に対して適用する:

$$- {\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{2} d u}}} = - {\color{red}{\left(\frac{\int{\sin^{2}{\left(u \right)} d u}}{2}\right)}}$$

冪低減公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha= u $$$ に適用する:

$$- \frac{{\color{red}{\int{\sin^{2}{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$ に対して適用する:

$$- \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{2} = - \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}}{2}$$

項別に積分せよ:

$$- \frac{{\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}}}{4} = - \frac{{\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}}{4}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$\frac{\int{\cos{\left(2 u \right)} d u}}{4} - \frac{{\color{red}{\int{1 d u}}}}{4} = \frac{\int{\cos{\left(2 u \right)} d u}}{4} - \frac{{\color{red}{u}}}{4}$$

$$$v=2 u$$$ とする。

すると $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$(手順は»で確認できます)、$$$du = \frac{dv}{2}$$$ となります。

したがって、

$$- \frac{u}{4} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{4} = - \frac{u}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{4}$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$ に対して適用する:

$$- \frac{u}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{4} = - \frac{u}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{4}$$

余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$- \frac{u}{4} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{8} = - \frac{u}{4} + \frac{{\color{red}{\sin{\left(v \right)}}}}{8}$$

次のことを思い出してください $$$v=2 u$$$:

$$- \frac{u}{4} + \frac{\sin{\left({\color{red}{v}} \right)}}{8} = - \frac{u}{4} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$

次のことを思い出してください $$$u=2 t$$$:

$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{8} - \frac{{\color{red}{u}}}{4} = \frac{\sin{\left(2 {\color{red}{\left(2 t\right)}} \right)}}{8} - \frac{{\color{red}{\left(2 t\right)}}}{4}$$

したがって、

$$\int{\left(- \sin^{2}{\left(2 t \right)}\right)d t} = - \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}$$

積分定数を加える:

$$\int{\left(- \sin^{2}{\left(2 t \right)}\right)d t} = - \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}+C$$

解答

$$$\int \left(- \sin^{2}{\left(2 t \right)}\right)\, dt = \left(- \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}\right) + C$$$A


Please try a new game Rotatly