$$$- \cos{\left(\frac{x}{y} \right)}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(- \cos{\left(\frac{x}{y} \right)}\right)\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-1$$$ と $$$f{\left(x \right)} = \cos{\left(\frac{x}{y} \right)}$$$ に対して適用する:
$${\color{red}{\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x}}} = {\color{red}{\left(- \int{\cos{\left(\frac{x}{y} \right)} d x}\right)}}$$
$$$u=\frac{x}{y}$$$ とする。
すると $$$du=\left(\frac{x}{y}\right)^{\prime }dx = \frac{dx}{y}$$$(手順は»で確認できます)、$$$dx = y du$$$ となります。
積分は次のようになります
$$- {\color{red}{\int{\cos{\left(\frac{x}{y} \right)} d x}}} = - {\color{red}{\int{y \cos{\left(u \right)} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=y$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$- {\color{red}{\int{y \cos{\left(u \right)} d u}}} = - {\color{red}{y \int{\cos{\left(u \right)} d u}}}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- y {\color{red}{\int{\cos{\left(u \right)} d u}}} = - y {\color{red}{\sin{\left(u \right)}}}$$
次のことを思い出してください $$$u=\frac{x}{y}$$$:
$$- y \sin{\left({\color{red}{u}} \right)} = - y \sin{\left({\color{red}{\frac{x}{y}}} \right)}$$
したがって、
$$\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x} = - y \sin{\left(\frac{x}{y} \right)}$$
積分定数を加える:
$$\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x} = - y \sin{\left(\frac{x}{y} \right)}+C$$
解答
$$$\int \left(- \cos{\left(\frac{x}{y} \right)}\right)\, dx = - y \sin{\left(\frac{x}{y} \right)} + C$$$A