$$$- 21 x - 3 \ln\left(- x\right)$$$の積分
入力内容
$$$\int \left(- 21 x - 3 \ln\left(- x\right)\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- 21 x - 3 \ln{\left(- x \right)}\right)d x}}} = {\color{red}{\left(- \int{21 x d x} - \int{3 \ln{\left(- x \right)} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=21$$$ と $$$f{\left(x \right)} = x$$$ に対して適用する:
$$- \int{3 \ln{\left(- x \right)} d x} - {\color{red}{\int{21 x d x}}} = - \int{3 \ln{\left(- x \right)} d x} - {\color{red}{\left(21 \int{x d x}\right)}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \int{3 \ln{\left(- x \right)} d x} - 21 {\color{red}{\int{x d x}}}=- \int{3 \ln{\left(- x \right)} d x} - 21 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{3 \ln{\left(- x \right)} d x} - 21 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$ と $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$ に対して適用する:
$$- \frac{21 x^{2}}{2} - {\color{red}{\int{3 \ln{\left(- x \right)} d x}}} = - \frac{21 x^{2}}{2} - {\color{red}{\left(3 \int{\ln{\left(- x \right)} d x}\right)}}$$
$$$u=- x$$$ とする。
すると $$$du=\left(- x\right)^{\prime }dx = - dx$$$(手順は»で確認できます)、$$$dx = - du$$$ となります。
したがって、
$$- \frac{21 x^{2}}{2} - 3 {\color{red}{\int{\ln{\left(- x \right)} d x}}} = - \frac{21 x^{2}}{2} - 3 {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ に対して適用する:
$$- \frac{21 x^{2}}{2} - 3 {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = - \frac{21 x^{2}}{2} - 3 {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$
積分 $$$\int{\ln{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$を用いてください。
$$$\operatorname{g}=\ln{\left(u \right)}$$$ と $$$\operatorname{dv}=du$$$ とする。
したがって、$$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d u}=u$$$(手順は»を参照)。
したがって、
$$- \frac{21 x^{2}}{2} + 3 {\color{red}{\int{\ln{\left(u \right)} d u}}}=- \frac{21 x^{2}}{2} + 3 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- \frac{21 x^{2}}{2} + 3 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:
$$3 u \ln{\left(u \right)} - \frac{21 x^{2}}{2} - 3 {\color{red}{\int{1 d u}}} = 3 u \ln{\left(u \right)} - \frac{21 x^{2}}{2} - 3 {\color{red}{u}}$$
次のことを思い出してください $$$u=- x$$$:
$$- \frac{21 x^{2}}{2} - 3 {\color{red}{u}} + 3 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - \frac{21 x^{2}}{2} - 3 {\color{red}{\left(- x\right)}} + 3 {\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}$$
したがって、
$$\int{\left(- 21 x - 3 \ln{\left(- x \right)}\right)d x} = - \frac{21 x^{2}}{2} - 3 x \ln{\left(- x \right)} + 3 x$$
簡単化せよ:
$$\int{\left(- 21 x - 3 \ln{\left(- x \right)}\right)d x} = \frac{3 x \left(- 7 x - 2 \ln{\left(- x \right)} + 2\right)}{2}$$
積分定数を加える:
$$\int{\left(- 21 x - 3 \ln{\left(- x \right)}\right)d x} = \frac{3 x \left(- 7 x - 2 \ln{\left(- x \right)} + 2\right)}{2}+C$$
解答
$$$\int \left(- 21 x - 3 \ln\left(- x\right)\right)\, dx = \frac{3 x \left(- 7 x - 2 \ln\left(- x\right) + 2\right)}{2} + C$$$A