$$$- \frac{1}{2 t^{\frac{4}{3}}}$$$の積分
入力内容
$$$\int \left(- \frac{1}{2 t^{\frac{4}{3}}}\right)\, dt$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=- \frac{1}{2}$$$ と $$$f{\left(t \right)} = \frac{1}{t^{\frac{4}{3}}}$$$ に対して適用する:
$${\color{red}{\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t}}} = {\color{red}{\left(- \frac{\int{\frac{1}{t^{\frac{4}{3}}} d t}}{2}\right)}}$$
$$$n=- \frac{4}{3}$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \frac{{\color{red}{\int{\frac{1}{t^{\frac{4}{3}}} d t}}}}{2}=- \frac{{\color{red}{\int{t^{- \frac{4}{3}} d t}}}}{2}=- \frac{{\color{red}{\frac{t^{- \frac{4}{3} + 1}}{- \frac{4}{3} + 1}}}}{2}=- \frac{{\color{red}{\left(- 3 t^{- \frac{1}{3}}\right)}}}{2}=- \frac{{\color{red}{\left(- \frac{3}{\sqrt[3]{t}}\right)}}}{2}$$
したがって、
$$\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t} = \frac{3}{2 \sqrt[3]{t}}$$
積分定数を加える:
$$\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t} = \frac{3}{2 \sqrt[3]{t}}+C$$
解答
$$$\int \left(- \frac{1}{2 t^{\frac{4}{3}}}\right)\, dt = \frac{3}{2 \sqrt[3]{t}} + C$$$A