$$$b \sin{\left(x \right)}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int b \sin{\left(x \right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=b$$$ と $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{b \sin{\left(x \right)} d x}}} = {\color{red}{b \int{\sin{\left(x \right)} d x}}}$$
正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:
$$b {\color{red}{\int{\sin{\left(x \right)} d x}}} = b {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
したがって、
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}$$
積分定数を加える:
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}+C$$
解答
$$$\int b \sin{\left(x \right)}\, dx = - b \cos{\left(x \right)} + C$$$A
Please try a new game Rotatly