$$$\frac{1}{x^{\frac{7}{10}}}$$$の積分
入力内容
$$$\int \frac{1}{x^{\frac{7}{10}}}\, dx$$$ を求めよ。
解答
$$$n=- \frac{7}{10}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{x^{\frac{7}{10}}} d x}}}={\color{red}{\int{x^{- \frac{7}{10}} d x}}}={\color{red}{\frac{x^{- \frac{7}{10} + 1}}{- \frac{7}{10} + 1}}}={\color{red}{\left(\frac{10 x^{\frac{3}{10}}}{3}\right)}}$$
したがって、
$$\int{\frac{1}{x^{\frac{7}{10}}} d x} = \frac{10 x^{\frac{3}{10}}}{3}$$
積分定数を加える:
$$\int{\frac{1}{x^{\frac{7}{10}}} d x} = \frac{10 x^{\frac{3}{10}}}{3}+C$$
解答
$$$\int \frac{1}{x^{\frac{7}{10}}}\, dx = \frac{10 x^{\frac{3}{10}}}{3} + C$$$A
Please try a new game Rotatly