$$$\frac{1}{x \ln^{3}\left(x\right)}$$$$$$t$$$ に関する積分

この計算機は、$$$t$$$ に関して $$$\frac{1}{x \ln^{3}\left(x\right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$ を求めよ。

解答

$$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:

$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$

したがって、

$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$

積分定数を加える:

$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$

解答

$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A


Please try a new game Rotatly