$$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$の積分

この計算機は、手順を示しながら$$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx$$$ を求めよ。

解答

分子と分母に$$$\frac{1}{\cos^{2}{\left(x \right)}}$$$を掛け、$$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$$$$\frac{1}{\tan^{2}{\left(x \right)}}$$$に変換します。:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$

余弦を2つくくり出し、公式 $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$ を用いて正割で表し直しなさい。:

$${\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$

公式 $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$ を用いて、余弦を正接で表せ。:

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$

$$$u=\tan{\left(x \right)}$$$ とする。

すると $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\sec^{2}{\left(x \right)} dx = du$$$ となります。

この積分は次のように書き換えられる

$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}} = {\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}}$$

項別に積分せよ:

$${\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u^{2}} d u}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$\int{\frac{1}{u^{2}} d u} + {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2}} d u} + {\color{red}{u}}$$

$$$n=-2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$u + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=u + {\color{red}{\int{u^{-2} d u}}}=u + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=u + {\color{red}{\left(- u^{-1}\right)}}=u + {\color{red}{\left(- \frac{1}{u}\right)}}$$

次のことを思い出してください $$$u=\tan{\left(x \right)}$$$:

$$- {\color{red}{u}}^{-1} + {\color{red}{u}} = - {\color{red}{\tan{\left(x \right)}}}^{-1} + {\color{red}{\tan{\left(x \right)}}}$$

したがって、

$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}$$

積分定数を加える:

$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}+C$$

解答

$$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx = \left(\tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly