$$$\frac{\ln^{2}\left(x\right)}{x}$$$$$$t$$$ に関する積分

この計算機は、$$$t$$$ に関して $$$\frac{\ln^{2}\left(x\right)}{x}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$ を求めよ。

解答

$$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:

$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$

したがって、

$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$

積分定数を加える:

$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$

解答

$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A


Please try a new game Rotatly