$$$\frac{\ln^{2}\left(x\right)}{x}$$$ の $$$t$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$ を求めよ。
解答
$$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$
したがって、
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$
積分定数を加える:
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$
解答
$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A
Please try a new game Rotatly