$$$\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\pi}{40}$$$ と $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x}}} = {\color{red}{\left(\frac{\pi \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}{40}\right)}}$$
$$$u=\sin{\left(x \right)}$$$ とする。
すると $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\cos{\left(x \right)} dx = du$$$ となります。
この積分は次のように書き換えられる
$$\frac{\pi {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}}{40} = \frac{\pi {\color{red}{\int{u d u}}}}{40}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{\pi {\color{red}{\int{u d u}}}}{40}=\frac{\pi {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{40}=\frac{\pi {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{40}$$
次のことを思い出してください $$$u=\sin{\left(x \right)}$$$:
$$\frac{\pi {\color{red}{u}}^{2}}{80} = \frac{\pi {\color{red}{\sin{\left(x \right)}}}^{2}}{80}$$
したがって、
$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}$$
積分定数を加える:
$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}+C$$
解答
$$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx = \frac{\pi \sin^{2}{\left(x \right)}}{80} + C$$$A