$$$\frac{x - 5}{3 x - 2}$$$の積分
入力内容
$$$\int \frac{x - 5}{3 x - 2}\, dx$$$ を求めよ。
解答
被積分関数の分子を$$$x - 5=\frac{1}{3}\left(3 x - 2\right)- \frac{13}{3}$$$として書き換え、分数を分解する:
$${\color{red}{\int{\frac{x - 5}{3 x - 2} d x}}} = {\color{red}{\int{\left(\frac{1}{3} - \frac{13}{3 \left(3 x - 2\right)}\right)d x}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(\frac{1}{3} - \frac{13}{3 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{3} d x} - \int{\frac{13}{3 \left(3 x - 2\right)} d x}\right)}}$$
$$$c=\frac{1}{3}$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$- \int{\frac{13}{3 \left(3 x - 2\right)} d x} + {\color{red}{\int{\frac{1}{3} d x}}} = - \int{\frac{13}{3 \left(3 x - 2\right)} d x} + {\color{red}{\left(\frac{x}{3}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{13}{3}$$$ と $$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$ に対して適用する:
$$\frac{x}{3} - {\color{red}{\int{\frac{13}{3 \left(3 x - 2\right)} d x}}} = \frac{x}{3} - {\color{red}{\left(\frac{13 \int{\frac{1}{3 x - 2} d x}}{3}\right)}}$$
$$$u=3 x - 2$$$ とする。
すると $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{3}$$$ となります。
したがって、
$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{3} = \frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 u} d u}}}}{3}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$ と $$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:
$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{3 u} d u}}}}{3} = \frac{x}{3} - \frac{13 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{3}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\frac{x}{3} - \frac{13 {\color{red}{\int{\frac{1}{u} d u}}}}{9} = \frac{x}{3} - \frac{13 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{9}$$
次のことを思い出してください $$$u=3 x - 2$$$:
$$\frac{x}{3} - \frac{13 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{9} = \frac{x}{3} - \frac{13 \ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{9}$$
したがって、
$$\int{\frac{x - 5}{3 x - 2} d x} = \frac{x}{3} - \frac{13 \ln{\left(\left|{3 x - 2}\right| \right)}}{9}$$
積分定数を加える:
$$\int{\frac{x - 5}{3 x - 2} d x} = \frac{x}{3} - \frac{13 \ln{\left(\left|{3 x - 2}\right| \right)}}{9}+C$$
解答
$$$\int \frac{x - 5}{3 x - 2}\, dx = \left(\frac{x}{3} - \frac{13 \ln\left(\left|{3 x - 2}\right|\right)}{9}\right) + C$$$A