$$$\frac{x - 5}{x \left(x - 2\right)}$$$の積分
入力内容
$$$\int \frac{x - 5}{x \left(x - 2\right)}\, dx$$$ を求めよ。
解答
部分分数分解を行う (手順は»で確認できます):
$${\color{red}{\int{\frac{x - 5}{x \left(x - 2\right)} d x}}} = {\color{red}{\int{\left(- \frac{3}{2 \left(x - 2\right)} + \frac{5}{2 x}\right)d x}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(- \frac{3}{2 \left(x - 2\right)} + \frac{5}{2 x}\right)d x}}} = {\color{red}{\left(\int{\frac{5}{2 x} d x} - \int{\frac{3}{2 \left(x - 2\right)} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{3}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ に対して適用する:
$$\int{\frac{5}{2 x} d x} - {\color{red}{\int{\frac{3}{2 \left(x - 2\right)} d x}}} = \int{\frac{5}{2 x} d x} - {\color{red}{\left(\frac{3 \int{\frac{1}{x - 2} d x}}{2}\right)}}$$
$$$u=x - 2$$$ とする。
すると $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$$\int{\frac{5}{2 x} d x} - \frac{3 {\color{red}{\int{\frac{1}{x - 2} d x}}}}{2} = \int{\frac{5}{2 x} d x} - \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\int{\frac{5}{2 x} d x} - \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = \int{\frac{5}{2 x} d x} - \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
次のことを思い出してください $$$u=x - 2$$$:
$$- \frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + \int{\frac{5}{2 x} d x} = - \frac{3 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{2} + \int{\frac{5}{2 x} d x}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{5}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{x}$$$ に対して適用する:
$$- \frac{3 \ln{\left(\left|{x - 2}\right| \right)}}{2} + {\color{red}{\int{\frac{5}{2 x} d x}}} = - \frac{3 \ln{\left(\left|{x - 2}\right| \right)}}{2} + {\color{red}{\left(\frac{5 \int{\frac{1}{x} d x}}{2}\right)}}$$
$$$\frac{1}{x}$$$ の不定積分は $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ です:
$$- \frac{3 \ln{\left(\left|{x - 2}\right| \right)}}{2} + \frac{5 {\color{red}{\int{\frac{1}{x} d x}}}}{2} = - \frac{3 \ln{\left(\left|{x - 2}\right| \right)}}{2} + \frac{5 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{2}$$
したがって、
$$\int{\frac{x - 5}{x \left(x - 2\right)} d x} = \frac{5 \ln{\left(\left|{x}\right| \right)}}{2} - \frac{3 \ln{\left(\left|{x - 2}\right| \right)}}{2}$$
積分定数を加える:
$$\int{\frac{x - 5}{x \left(x - 2\right)} d x} = \frac{5 \ln{\left(\left|{x}\right| \right)}}{2} - \frac{3 \ln{\left(\left|{x - 2}\right| \right)}}{2}+C$$
解答
$$$\int \frac{x - 5}{x \left(x - 2\right)}\, dx = \left(\frac{5 \ln\left(\left|{x}\right|\right)}{2} - \frac{3 \ln\left(\left|{x - 2}\right|\right)}{2}\right) + C$$$A