$$$\operatorname{sech}^{2}{\left(x \right)}$$$の積分
入力内容
$$$\int \operatorname{sech}^{2}{\left(x \right)}\, dx$$$ を求めよ。
解答
$$$\operatorname{sech}^{2}{\left(x \right)}$$$ の不定積分は $$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}$$$ です:
$${\color{red}{\int{\operatorname{sech}^{2}{\left(x \right)} d x}}} = {\color{red}{\tanh{\left(x \right)}}}$$
したがって、
$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}$$
積分定数を加える:
$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}+C$$
解答
$$$\int \operatorname{sech}^{2}{\left(x \right)}\, dx = \tanh{\left(x \right)} + C$$$A
Please try a new game Rotatly