$$$\frac{\ln^{2}\left(x^{2}\right)}{x}$$$の積分
入力内容
$$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx$$$ を求めよ。
解答
入力は次のように書き換えられます: $$$\int{\frac{\ln{\left(x^{2} \right)}^{2}}{x} d x}=\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}$$$。
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=4$$$ と $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}^{2}}{x}$$$ に対して適用する:
$${\color{red}{\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}}} = {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}^{2}}{x} d x}\right)}}$$
$$$u=\ln{\left(x \right)}$$$ とする。
すると $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$(手順は»で確認できます)、$$$\frac{dx}{x} = du$$$ となります。
この積分は次のように書き換えられる
$$4 {\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d x}}} = 4 {\color{red}{\int{u^{2} d u}}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$4 {\color{red}{\int{u^{2} d u}}}=4 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=4 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
次のことを思い出してください $$$u=\ln{\left(x \right)}$$$:
$$\frac{4 {\color{red}{u}}^{3}}{3} = \frac{4 {\color{red}{\ln{\left(x \right)}}}^{3}}{3}$$
したがって、
$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}$$
積分定数を加える:
$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}+C$$
解答
$$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx = \frac{4 \ln^{3}\left(x\right)}{3} + C$$$A