$$$\sin{\left(x \right)} + e$$$の積分
入力内容
$$$\int \left(\sin{\left(x \right)} + e\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(\sin{\left(x \right)} + e\right)d x}}} = {\color{red}{\left(\int{e d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
$$$c=e$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{e d x}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{e x}}$$
正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:
$$e x + {\color{red}{\int{\sin{\left(x \right)} d x}}} = e x + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
したがって、
$$\int{\left(\sin{\left(x \right)} + e\right)d x} = e x - \cos{\left(x \right)}$$
積分定数を加える:
$$\int{\left(\sin{\left(x \right)} + e\right)d x} = e x - \cos{\left(x \right)}+C$$
解答
$$$\int \left(\sin{\left(x \right)} + e\right)\, dx = \left(e x - \cos{\left(x \right)}\right) + C$$$A