$$$- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + \int{\cos^{3}{\left(x \right)} d x}\right)}}$$

余弦を1つ取り出し、$$$\alpha=x$$$ を用いた公式 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ により、残りはすべて正弦で表せ。:

$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cos^{3}{\left(x \right)} d x}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}}$$

$$$u=\sin{\left(x \right)}$$$ とする。

すると $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\cos{\left(x \right)} dx = du$$$ となります。

したがって、

$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - u^{2}\right)d u}}}$$

項別に積分せよ:

$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - \int{u^{2} d u} + {\color{red}{u}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\int{u^{2} d u}}}=u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

次のことを思い出してください $$$u=\sin{\left(x \right)}$$$:

$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\sin{\left(x \right)}}} - \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3}$$

冪低減公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha=x$$$ に適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{\frac{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{2} d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = 3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}$$$ に対して適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{\frac{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{2} d x}}} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\left(\frac{\int{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)} d x}}{2}\right)}}$$

Expand the expression:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{\left(- 3 \cos{\left(x \right)} \cos{\left(2 x \right)} + 3 \cos{\left(x \right)}\right)d x}}}}{2}$$

項別に積分せよ:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{\left(- 3 \cos{\left(x \right)} \cos{\left(2 x \right)} + 3 \cos{\left(x \right)}\right)d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\left(- \int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x} + \int{3 \cos{\left(x \right)} d x}\right)}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$ に対して適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{3 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$

余弦の積分は$$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\sin{\left(x \right)}}}}{2}$$

$$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ の公式を用い、$$$\alpha=x$$$ および $$$\beta=2 x$$$ を用いて $$$\cos\left(x \right)\cos\left(2 x \right)$$$ を変形せよ:

$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(\frac{3 \cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}\right)d x}}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = 3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}$$$ に対して適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(\frac{3 \cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}\right)d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$

項別に積分せよ:

$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}\right)d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\left(\int{3 \cos{\left(x \right)} d x} + \int{3 \cos{\left(3 x \right)} d x}\right)}}}{4}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$ に対して適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\int{3 \cos{\left(x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}}{4}$$

余弦の積分は$$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\sin{\left(x \right)}}}}{4}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$ に対して適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\int{3 \cos{\left(3 x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\left(3 \int{\cos{\left(3 x \right)} d x}\right)}}}{4}$$

$$$u=3 x$$$ とする。

すると $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{3}$$$ となります。

したがって、

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{4}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{4}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$

次のことを思い出してください $$$u=3 x$$$:

$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{4}$$

したがって、

$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{4}$$

簡単化せよ:

$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = \frac{\sin{\left(3 x \right)}}{3}$$

積分定数を加える:

$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = \frac{\sin{\left(3 x \right)}}{3}+C$$

解答

$$$\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)\, dx = \frac{\sin{\left(3 x \right)}}{3} + C$$$A


Please try a new game Rotatly