$$$8 e a z - \frac{28 x}{3} - e$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \left(8 e a z - \frac{28 x}{3} - e\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x}}} = {\color{red}{\left(- \int{e d x} - \int{\frac{28 x}{3} d x} + \int{8 e a z d x}\right)}}$$
$$$c=e$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$- \int{\frac{28 x}{3} d x} + \int{8 e a z d x} - {\color{red}{\int{e d x}}} = - \int{\frac{28 x}{3} d x} + \int{8 e a z d x} - {\color{red}{e x}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{28}{3}$$$ と $$$f{\left(x \right)} = x$$$ に対して適用する:
$$- e x + \int{8 e a z d x} - {\color{red}{\int{\frac{28 x}{3} d x}}} = - e x + \int{8 e a z d x} - {\color{red}{\left(\frac{28 \int{x d x}}{3}\right)}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- e x + \int{8 e a z d x} - \frac{28 {\color{red}{\int{x d x}}}}{3}=- e x + \int{8 e a z d x} - \frac{28 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{3}=- e x + \int{8 e a z d x} - \frac{28 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{3}$$
$$$c=8 e a z$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$- \frac{14 x^{2}}{3} - e x + {\color{red}{\int{8 e a z d x}}} = - \frac{14 x^{2}}{3} - e x + {\color{red}{\left(8 e a x z\right)}}$$
したがって、
$$\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x} = 8 e a x z - \frac{14 x^{2}}{3} - e x$$
簡単化せよ:
$$\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x} = \frac{x \left(24 e a z - 14 x - 3 e\right)}{3}$$
積分定数を加える:
$$\int{\left(8 e a z - \frac{28 x}{3} - e\right)d x} = \frac{x \left(24 e a z - 14 x - 3 e\right)}{3}+C$$
解答
$$$\int \left(8 e a z - \frac{28 x}{3} - e\right)\, dx = \frac{x \left(24 e a z - 14 x - 3 e\right)}{3} + C$$$A