$$$\frac{z \left(6 - 2 z\right)^{5}}{3}$$$の積分
入力内容
$$$\int \frac{z \left(6 - 2 z\right)^{5}}{3}\, dz$$$ を求めよ。
解答
被積分関数を簡単化する:
$${\color{red}{\int{\frac{z \left(6 - 2 z\right)^{5}}{3} d z}}} = {\color{red}{\int{\frac{32 z \left(3 - z\right)^{5}}{3} d z}}}$$
定数倍の法則 $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ を、$$$c=\frac{32}{3}$$$ と $$$f{\left(z \right)} = z \left(3 - z\right)^{5}$$$ に対して適用する:
$${\color{red}{\int{\frac{32 z \left(3 - z\right)^{5}}{3} d z}}} = {\color{red}{\left(\frac{32 \int{z \left(3 - z\right)^{5} d z}}{3}\right)}}$$
$$$u=3 - z$$$ とする。
すると $$$du=\left(3 - z\right)^{\prime }dz = - dz$$$(手順は»で確認できます)、$$$dz = - du$$$ となります。
積分は次のようになります
$$\frac{32 {\color{red}{\int{z \left(3 - z\right)^{5} d z}}}}{3} = \frac{32 {\color{red}{\int{u^{5} \left(u - 3\right) d u}}}}{3}$$
Expand the expression:
$$\frac{32 {\color{red}{\int{u^{5} \left(u - 3\right) d u}}}}{3} = \frac{32 {\color{red}{\int{\left(u^{6} - 3 u^{5}\right)d u}}}}{3}$$
項別に積分せよ:
$$\frac{32 {\color{red}{\int{\left(u^{6} - 3 u^{5}\right)d u}}}}{3} = \frac{32 {\color{red}{\left(- \int{3 u^{5} d u} + \int{u^{6} d u}\right)}}}{3}$$
$$$n=6$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \frac{32 \int{3 u^{5} d u}}{3} + \frac{32 {\color{red}{\int{u^{6} d u}}}}{3}=- \frac{32 \int{3 u^{5} d u}}{3} + \frac{32 {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}}{3}=- \frac{32 \int{3 u^{5} d u}}{3} + \frac{32 {\color{red}{\left(\frac{u^{7}}{7}\right)}}}{3}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=3$$$ と $$$f{\left(u \right)} = u^{5}$$$ に対して適用する:
$$\frac{32 u^{7}}{21} - \frac{32 {\color{red}{\int{3 u^{5} d u}}}}{3} = \frac{32 u^{7}}{21} - \frac{32 {\color{red}{\left(3 \int{u^{5} d u}\right)}}}{3}$$
$$$n=5$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{32 u^{7}}{21} - 32 {\color{red}{\int{u^{5} d u}}}=\frac{32 u^{7}}{21} - 32 {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=\frac{32 u^{7}}{21} - 32 {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
次のことを思い出してください $$$u=3 - z$$$:
$$- \frac{16 {\color{red}{u}}^{6}}{3} + \frac{32 {\color{red}{u}}^{7}}{21} = - \frac{16 {\color{red}{\left(3 - z\right)}}^{6}}{3} + \frac{32 {\color{red}{\left(3 - z\right)}}^{7}}{21}$$
したがって、
$$\int{\frac{z \left(6 - 2 z\right)^{5}}{3} d z} = \frac{32 \left(3 - z\right)^{7}}{21} - \frac{16 \left(3 - z\right)^{6}}{3}$$
簡単化せよ:
$$\int{\frac{z \left(6 - 2 z\right)^{5}}{3} d z} = \frac{16 \left(- 2 z - 1\right) \left(z - 3\right)^{6}}{21}$$
積分定数を加える:
$$\int{\frac{z \left(6 - 2 z\right)^{5}}{3} d z} = \frac{16 \left(- 2 z - 1\right) \left(z - 3\right)^{6}}{21}+C$$
解答
$$$\int \frac{z \left(6 - 2 z\right)^{5}}{3}\, dz = \frac{16 \left(- 2 z - 1\right) \left(z - 3\right)^{6}}{21} + C$$$A