$$$4 \sqrt{x} - \frac{3}{x^{2}}$$$の積分

この計算機は、手順を示しながら$$$4 \sqrt{x} - \frac{3}{x^{2}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(4 \sqrt{x} - \frac{3}{x^{2}}\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(4 \sqrt{x} - \frac{3}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{\frac{3}{x^{2}} d x} + \int{4 \sqrt{x} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ に対して適用する:

$$\int{4 \sqrt{x} d x} - {\color{red}{\int{\frac{3}{x^{2}} d x}}} = \int{4 \sqrt{x} d x} - {\color{red}{\left(3 \int{\frac{1}{x^{2}} d x}\right)}}$$

$$$n=-2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\int{4 \sqrt{x} d x} - 3 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=\int{4 \sqrt{x} d x} - 3 {\color{red}{\int{x^{-2} d x}}}=\int{4 \sqrt{x} d x} - 3 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=\int{4 \sqrt{x} d x} - 3 {\color{red}{\left(- x^{-1}\right)}}=\int{4 \sqrt{x} d x} - 3 {\color{red}{\left(- \frac{1}{x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=4$$$$$$f{\left(x \right)} = \sqrt{x}$$$ に対して適用する:

$${\color{red}{\int{4 \sqrt{x} d x}}} + \frac{3}{x} = {\color{red}{\left(4 \int{\sqrt{x} d x}\right)}} + \frac{3}{x}$$

$$$n=\frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$4 {\color{red}{\int{\sqrt{x} d x}}} + \frac{3}{x}=4 {\color{red}{\int{x^{\frac{1}{2}} d x}}} + \frac{3}{x}=4 {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}} + \frac{3}{x}=4 {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}} + \frac{3}{x}$$

したがって、

$$\int{\left(4 \sqrt{x} - \frac{3}{x^{2}}\right)d x} = \frac{8 x^{\frac{3}{2}}}{3} + \frac{3}{x}$$

簡単化せよ:

$$\int{\left(4 \sqrt{x} - \frac{3}{x^{2}}\right)d x} = \frac{8 x^{\frac{5}{2}} + 9}{3 x}$$

積分定数を加える:

$$\int{\left(4 \sqrt{x} - \frac{3}{x^{2}}\right)d x} = \frac{8 x^{\frac{5}{2}} + 9}{3 x}+C$$

解答

$$$\int \left(4 \sqrt{x} - \frac{3}{x^{2}}\right)\, dx = \frac{8 x^{\frac{5}{2}} + 9}{3 x} + C$$$A


Please try a new game Rotatly