$$$2 x^{3} \left(3 x - 2\right)$$$の積分

この計算機は、手順を示しながら$$$2 x^{3} \left(3 x - 2\right)$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 2 x^{3} \left(3 x - 2\right)\, dx$$$ を求めよ。

解答

入力は次のように書き換えられます: $$$\int{2 x^{3} \left(3 x - 2\right) d x}=\int{x^{3} \left(6 x - 4\right) d x}$$$

被積分関数を簡単化する:

$${\color{red}{\int{x^{3} \left(6 x - 4\right) d x}}} = {\color{red}{\int{2 x^{3} \left(3 x - 2\right) d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = x^{3} \left(3 x - 2\right)$$$ に対して適用する:

$${\color{red}{\int{2 x^{3} \left(3 x - 2\right) d x}}} = {\color{red}{\left(2 \int{x^{3} \left(3 x - 2\right) d x}\right)}}$$

Expand the expression:

$$2 {\color{red}{\int{x^{3} \left(3 x - 2\right) d x}}} = 2 {\color{red}{\int{\left(3 x^{4} - 2 x^{3}\right)d x}}}$$

項別に積分せよ:

$$2 {\color{red}{\int{\left(3 x^{4} - 2 x^{3}\right)d x}}} = 2 {\color{red}{\left(- \int{2 x^{3} d x} + \int{3 x^{4} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = x^{3}$$$ に対して適用する:

$$2 \int{3 x^{4} d x} - 2 {\color{red}{\int{2 x^{3} d x}}} = 2 \int{3 x^{4} d x} - 2 {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$

$$$n=3$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$2 \int{3 x^{4} d x} - 4 {\color{red}{\int{x^{3} d x}}}=2 \int{3 x^{4} d x} - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=2 \int{3 x^{4} d x} - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$$$$f{\left(x \right)} = x^{4}$$$ に対して適用する:

$$- x^{4} + 2 {\color{red}{\int{3 x^{4} d x}}} = - x^{4} + 2 {\color{red}{\left(3 \int{x^{4} d x}\right)}}$$

$$$n=4$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- x^{4} + 6 {\color{red}{\int{x^{4} d x}}}=- x^{4} + 6 {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- x^{4} + 6 {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$

したがって、

$$\int{x^{3} \left(6 x - 4\right) d x} = \frac{6 x^{5}}{5} - x^{4}$$

簡単化せよ:

$$\int{x^{3} \left(6 x - 4\right) d x} = \frac{x^{4} \left(6 x - 5\right)}{5}$$

積分定数を加える:

$$\int{x^{3} \left(6 x - 4\right) d x} = \frac{x^{4} \left(6 x - 5\right)}{5}+C$$

解答

$$$\int 2 x^{3} \left(3 x - 2\right)\, dx = \frac{x^{4} \left(6 x - 5\right)}{5} + C$$$A


Please try a new game Rotatly