$$$\frac{2 v}{v - 1}$$$の積分
入力内容
$$$\int \frac{2 v}{v - 1}\, dv$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=2$$$ と $$$f{\left(v \right)} = \frac{v}{v - 1}$$$ に対して適用する:
$${\color{red}{\int{\frac{2 v}{v - 1} d v}}} = {\color{red}{\left(2 \int{\frac{v}{v - 1} d v}\right)}}$$
分数を変形して分解する:
$$2 {\color{red}{\int{\frac{v}{v - 1} d v}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{v - 1}\right)d v}}}$$
項別に積分せよ:
$$2 {\color{red}{\int{\left(1 + \frac{1}{v - 1}\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{\frac{1}{v - 1} d v}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dv = c v$$$ を適用する:
$$2 \int{\frac{1}{v - 1} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{\frac{1}{v - 1} d v} + 2 {\color{red}{v}}$$
$$$u=v - 1$$$ とする。
すると $$$du=\left(v - 1\right)^{\prime }dv = 1 dv$$$(手順は»で確認できます)、$$$dv = du$$$ となります。
積分は次のようになります
$$2 v + 2 {\color{red}{\int{\frac{1}{v - 1} d v}}} = 2 v + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$2 v + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 v + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
次のことを思い出してください $$$u=v - 1$$$:
$$2 v + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 v + 2 \ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}$$
したがって、
$$\int{\frac{2 v}{v - 1} d v} = 2 v + 2 \ln{\left(\left|{v - 1}\right| \right)}$$
簡単化せよ:
$$\int{\frac{2 v}{v - 1} d v} = 2 \left(v + \ln{\left(\left|{v - 1}\right| \right)}\right)$$
積分定数を加える:
$$\int{\frac{2 v}{v - 1} d v} = 2 \left(v + \ln{\left(\left|{v - 1}\right| \right)}\right)+C$$
解答
$$$\int \frac{2 v}{v - 1}\, dv = 2 \left(v + \ln\left(\left|{v - 1}\right|\right)\right) + C$$$A