$$$\frac{1}{2 \left(1 - x^{2}\right)}$$$の積分
入力内容
$$$\int \frac{1}{2 \left(1 - x^{2}\right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{1 - x^{2}}$$$ に対して適用する:
$${\color{red}{\int{\frac{1}{2 \left(1 - x^{2}\right)} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{1 - x^{2}} d x}}{2}\right)}}$$
部分分数分解を行う (手順は»で確認できます):
$$\frac{{\color{red}{\int{\frac{1}{1 - x^{2}} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}}{2}$$
項別に積分せよ:
$$\frac{{\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}}{2}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ に対して適用する:
$$- \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}}}{2} = - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}}{2}$$
$$$u=x + 1$$$ とする。
すると $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
積分は次のようになります
$$- \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} + \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{4} = - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$- \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
次のことを思い出してください $$$u=x + 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{4} - \frac{\int{\frac{1}{2 \left(x - 1\right)} d x}}{2}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ に対して適用する:
$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}}}{2} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}}{2}$$
$$$u=x - 1$$$ とする。
すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{4} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
次のことを思い出してください $$$u=x - 1$$$:
$$\frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = \frac{\ln{\left(\left|{x + 1}\right| \right)}}{4} - \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{4}$$
したがって、
$$\int{\frac{1}{2 \left(1 - x^{2}\right)} d x} = - \frac{\ln{\left(\left|{x - 1}\right| \right)}}{4} + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{4}$$
簡単化せよ:
$$\int{\frac{1}{2 \left(1 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}}{4}$$
積分定数を加える:
$$\int{\frac{1}{2 \left(1 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}}{4}+C$$
解答
$$$\int \frac{1}{2 \left(1 - x^{2}\right)}\, dx = \frac{- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)}{4} + C$$$A