$$$\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}$$$の積分

この計算機は、手順を示しながら$$$\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)\, dt$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t}}} = {\color{red}{\left(\int{\frac{1}{2} d t} - \int{\frac{\cos{\left(6 t \right)}}{2} d t}\right)}}$$

$$$c=\frac{1}{2}$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:

$$- \int{\frac{\cos{\left(6 t \right)}}{2} d t} + {\color{red}{\int{\frac{1}{2} d t}}} = - \int{\frac{\cos{\left(6 t \right)}}{2} d t} + {\color{red}{\left(\frac{t}{2}\right)}}$$

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \cos{\left(6 t \right)}$$$ に対して適用する:

$$\frac{t}{2} - {\color{red}{\int{\frac{\cos{\left(6 t \right)}}{2} d t}}} = \frac{t}{2} - {\color{red}{\left(\frac{\int{\cos{\left(6 t \right)} d t}}{2}\right)}}$$

$$$u=6 t$$$ とする。

すると $$$du=\left(6 t\right)^{\prime }dt = 6 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{6}$$$ となります。

この積分は次のように書き換えられる

$$\frac{t}{2} - \frac{{\color{red}{\int{\cos{\left(6 t \right)} d t}}}}{2} = \frac{t}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{6}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{t}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{2} = \frac{t}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{2}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{t}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{12} = \frac{t}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{12}$$

次のことを思い出してください $$$u=6 t$$$:

$$\frac{t}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{12} = \frac{t}{2} - \frac{\sin{\left({\color{red}{\left(6 t\right)}} \right)}}{12}$$

したがって、

$$\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t} = \frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}$$

積分定数を加える:

$$\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t} = \frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}+C$$

解答

$$$\int \left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)\, dt = \left(\frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}\right) + C$$$A


Please try a new game Rotatly