$$$n \left(n - 1\right)$$$の積分
入力内容
$$$\int n \left(n - 1\right)\, dn$$$ を求めよ。
解答
Expand the expression:
$${\color{red}{\int{n \left(n - 1\right) d n}}} = {\color{red}{\int{\left(n^{2} - n\right)d n}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(n^{2} - n\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{n^{2} d n}\right)}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \int{n d n} + {\color{red}{\int{n^{2} d n}}}=- \int{n d n} + {\color{red}{\frac{n^{1 + 2}}{1 + 2}}}=- \int{n d n} + {\color{red}{\left(\frac{n^{3}}{3}\right)}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{n^{3}}{3} - {\color{red}{\int{n d n}}}=\frac{n^{3}}{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=\frac{n^{3}}{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$
したがって、
$$\int{n \left(n - 1\right) d n} = \frac{n^{3}}{3} - \frac{n^{2}}{2}$$
簡単化せよ:
$$\int{n \left(n - 1\right) d n} = \frac{n^{2} \left(2 n - 3\right)}{6}$$
積分定数を加える:
$$\int{n \left(n - 1\right) d n} = \frac{n^{2} \left(2 n - 3\right)}{6}+C$$
解答
$$$\int n \left(n - 1\right)\, dn = \frac{n^{2} \left(2 n - 3\right)}{6} + C$$$A