$$$\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}$$$の積分
入力内容
$$$\int \frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\pi}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{x^{2} \sqrt{x^{2} - 1}}$$$ に対して適用する:
$${\color{red}{\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x}}} = {\color{red}{\left(\frac{\pi \int{\frac{1}{x^{2} \sqrt{x^{2} - 1}} d x}}{2}\right)}}$$
$$$x=\cosh{\left(u \right)}$$$ とする。
すると $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (手順は»で確認できます)。
また、$$$u=\operatorname{acosh}{\left(x \right)}$$$が成り立つ。
したがって、
$$$\frac{1}{x^{2} \sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}$$$
恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$ を用いよ:
$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}}$$$
$$$\sinh{\left( u \right)} \ge 0$$$ を仮定すると、以下が得られる:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}} = \frac{1}{\sinh{\left( u \right)} \cosh^{2}{\left( u \right)}}$$$
したがって、
$$\frac{\pi {\color{red}{\int{\frac{1}{x^{2} \sqrt{x^{2} - 1}} d x}}}}{2} = \frac{\pi {\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{2}$$
被積分関数を双曲線正割関数で表せ:
$$\frac{\pi {\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{2} = \frac{\pi {\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{2}$$
$$$\operatorname{sech}^{2}{\left(u \right)}$$$ の不定積分は $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$ です:
$$\frac{\pi {\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{2} = \frac{\pi {\color{red}{\tanh{\left(u \right)}}}}{2}$$
次のことを思い出してください $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\frac{\pi \tanh{\left({\color{red}{u}} \right)}}{2} = \frac{\pi \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}{2}$$
したがって、
$$\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x} = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x}$$
積分定数を加える:
$$\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x} = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x}+C$$
解答
$$$\int \frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}\, dx = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x} + C$$$A