$$$\frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5}\, dx$$$ を求めよ。
解答
入力は次のように書き換えられます: $$$\int{\frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5} d x}=\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x}$$$。
被積分関数を簡単化する:
$${\color{red}{\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x}}} = {\color{red}{\int{\frac{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5} d x}}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{5}$$$ と $$$f{\left(x \right)} = \left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}$$$ に対して適用する:
$${\color{red}{\int{\frac{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5} d x}}} = {\color{red}{\left(\frac{\int{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}} d x}}{5}\right)}}$$
積分 $$$\int{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$ と $$$\operatorname{dv}=e^{- \frac{x}{5}} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)^{\prime }dx=\frac{dx}{e^{\frac{1}{10}}}$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- \frac{x}{5}} d x}=- 5 e^{- \frac{x}{5}}$$$(手順は»を参照)。
したがって、
$$\frac{{\color{red}{\int{\left(\frac{x - 10}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}} d x}}}}{5}=\frac{{\color{red}{\left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}} \cdot \left(- 5 e^{- \frac{x}{5}}\right)-\int{\left(- 5 e^{- \frac{x}{5}}\right) \cdot e^{- \frac{1}{10}} d x}\right)}}}{5}=\frac{{\color{red}{\left(- \frac{5 \left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \int{\left(- \frac{5 e^{- \frac{x}{5}}}{e^{\frac{1}{10}}}\right)d x}\right)}}}{5}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=- \frac{5}{e^{\frac{1}{10}}}$$$ と $$$f{\left(x \right)} = e^{- \frac{x}{5}}$$$ に対して適用する:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{{\color{red}{\int{\left(- \frac{5 e^{- \frac{x}{5}}}{e^{\frac{1}{10}}}\right)d x}}}}{5} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{{\color{red}{\left(- \frac{5 \int{e^{- \frac{x}{5}} d x}}{e^{\frac{1}{10}}}\right)}}}{5}$$
$$$u=- \frac{x}{5}$$$ とする。
すると $$$du=\left(- \frac{x}{5}\right)^{\prime }dx = - \frac{dx}{5}$$$(手順は»で確認できます)、$$$dx = - 5 du$$$ となります。
積分は次のようになります
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\int{e^{- \frac{x}{5}} d x}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\int{\left(- 5 e^{u}\right)d u}}}}{e^{\frac{1}{10}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-5$$$ と $$$f{\left(u \right)} = e^{u}$$$ に対して適用する:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\int{\left(- 5 e^{u}\right)d u}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} + \frac{{\color{red}{\left(- 5 \int{e^{u} d u}\right)}}}{e^{\frac{1}{10}}}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 {\color{red}{\int{e^{u} d u}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 {\color{red}{e^{u}}}}{e^{\frac{1}{10}}}$$
次のことを思い出してください $$$u=- \frac{x}{5}$$$:
$$- \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 e^{{\color{red}{u}}}}{e^{\frac{1}{10}}} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 e^{{\color{red}{\left(- \frac{x}{5}\right)}}}}{e^{\frac{1}{10}}}$$
したがって、
$$\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x} = - \frac{\left(x - 10 + e^{\frac{1}{10}}\right) e^{- \frac{x}{5}}}{e^{\frac{1}{10}}} - \frac{5 e^{- \frac{x}{5}}}{e^{\frac{1}{10}}}$$
簡単化せよ:
$$\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x} = \left(- x - e^{\frac{1}{10}} + 5\right) e^{- \frac{x}{5} - \frac{1}{10}}$$
積分定数を加える:
$$\int{\left(\frac{x - 10}{5 e^{\frac{1}{10}}} + \frac{1}{5}\right) e^{- \frac{x}{5}} d x} = \left(- x - e^{\frac{1}{10}} + 5\right) e^{- \frac{x}{5} - \frac{1}{10}}+C$$
解答
$$$\int \frac{\left(- \frac{10 - x}{e^{\frac{1}{10}}} + 1\right) e^{- \frac{x}{5}}}{5}\, dx = \left(- x - e^{\frac{1}{10}} + 5\right) e^{- \frac{x}{5} - \frac{1}{10}} + C$$$A