$$$\sqrt[3]{-1}$$$ を求めよ

この計算機は、手順を示しながら複素数 $$$-1$$$$$$n$$$ 次根 ($$$n = 3$$$) をすべて求めます。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\sqrt[3]{-1}$$$ を求めよ。

解答

$$$-1$$$ の極形式は $$$\cos{\left(\pi \right)} + i \sin{\left(\pi \right)}$$$ です (手順は 極形式計算機 を参照)。

ド・モアブルの公式によれば、複素数 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$$$$n$$$ 乗根はすべて $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ で与えられる。

$$$r = 1$$$$$$\theta = \pi$$$、および$$$n = 3$$$が成り立つ。

  • $$$k = 0$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\pi + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{\pi + 2\cdot \pi\cdot 0}{3} \right)}\right) = \cos{\left(\frac{\pi}{3} \right)} + i \sin{\left(\frac{\pi}{3} \right)} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$$
  • $$$k = 1$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\pi + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{\pi + 2\cdot \pi\cdot 1}{3} \right)}\right) = \cos{\left(\pi \right)} + i \sin{\left(\pi \right)} = -1$$$
  • $$$k = 2$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\pi + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{\pi + 2\cdot \pi\cdot 2}{3} \right)}\right) = \cos{\left(\frac{5 \pi}{3} \right)} + i \sin{\left(\frac{5 \pi}{3} \right)} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$

解答

$$$\sqrt[3]{-1} = \frac{1}{2} + \frac{\sqrt{3} i}{2}\approx 0.5 + 0.866025403784439 i$$$A

$$$\sqrt[3]{-1} = -1$$$A

$$$\sqrt[3]{-1} = \frac{1}{2} - \frac{\sqrt{3} i}{2}\approx 0.5 - 0.866025403784439 i$$$A


Please try a new game Rotatly