Integrale di $$$\frac{\ln\left(\sqrt{x}\right)}{x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\ln\left(x\right)}{2 x}\, dx$$$.
Soluzione
L'input viene riscritto: $$$\int{\frac{\ln{\left(\sqrt{x} \right)}}{x} d x}=\int{\frac{\ln{\left(x \right)}}{2 x} d x}$$$.
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}}{x}$$$:
$${\color{red}{\int{\frac{\ln{\left(x \right)}}{2 x} d x}}} = {\color{red}{\left(\frac{\int{\frac{\ln{\left(x \right)}}{x} d x}}{2}\right)}}$$
Sia $$$u=\ln{\left(x \right)}$$$.
Quindi $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{dx}{x} = du$$$.
Pertanto,
$$\frac{{\color{red}{\int{\frac{\ln{\left(x \right)}}{x} d x}}}}{2} = \frac{{\color{red}{\int{u d u}}}}{2}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\frac{{\color{red}{\int{u d u}}}}{2}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$
Ricordiamo che $$$u=\ln{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{2}}{4} = \frac{{\color{red}{\ln{\left(x \right)}}}^{2}}{4}$$
Pertanto,
$$\int{\frac{\ln{\left(x \right)}}{2 x} d x} = \frac{\ln{\left(x \right)}^{2}}{4}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\ln{\left(x \right)}}{2 x} d x} = \frac{\ln{\left(x \right)}^{2}}{4}+C$$
Risposta
$$$\int \frac{\ln\left(x\right)}{2 x}\, dx = \frac{\ln^{2}\left(x\right)}{4} + C$$$A