Integrale di $$$\sin{\left(2 t \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sin{\left(2 t \right)}\, dt$$$.
Soluzione
Sia $$$u=2 t$$$.
Quindi $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{du}{2}$$$.
Pertanto,
$${\color{red}{\int{\sin{\left(2 t \right)} d t}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Ricordiamo che $$$u=2 t$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{\left(2 t\right)}} \right)}}{2}$$
Pertanto,
$$\int{\sin{\left(2 t \right)} d t} = - \frac{\cos{\left(2 t \right)}}{2}$$
Aggiungi la costante di integrazione:
$$\int{\sin{\left(2 t \right)} d t} = - \frac{\cos{\left(2 t \right)}}{2}+C$$
Risposta
$$$\int \sin{\left(2 t \right)}\, dt = - \frac{\cos{\left(2 t \right)}}{2} + C$$$A