Integrale di $$$\ln\left(\sqrt{x}\right)$$$

La calcolatrice troverà l'integrale/primitiva di $$$\ln\left(\sqrt{x}\right)$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\ln\left(x\right)}{2}\, dx$$$.

Soluzione

L'input viene riscritto: $$$\int{\ln{\left(\sqrt{x} \right)} d x}=\int{\frac{\ln{\left(x \right)}}{2} d x}$$$.

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\ln{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(x \right)} d x}}{2}\right)}}$$

Per l'integrale $$$\int{\ln{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\ln{\left(x \right)}$$$ e $$$\operatorname{dv}=dx$$$.

Quindi $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (i passaggi si possono vedere »).

Quindi,

$$\frac{{\color{red}{\int{\ln{\left(x \right)} d x}}}}{2}=\frac{{\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{2}=\frac{{\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{2}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\frac{x \ln{\left(x \right)}}{2} - \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x \ln{\left(x \right)}}{2} - \frac{{\color{red}{x}}}{2}$$

Pertanto,

$$\int{\frac{\ln{\left(x \right)}}{2} d x} = \frac{x \ln{\left(x \right)}}{2} - \frac{x}{2}$$

Semplifica:

$$\int{\frac{\ln{\left(x \right)}}{2} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\ln{\left(x \right)}}{2} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{2}+C$$

Risposta

$$$\int \frac{\ln\left(x\right)}{2}\, dx = \frac{x \left(\ln\left(x\right) - 1\right)}{2} + C$$$A


Please try a new game Rotatly